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a b s t r a c t 

Decoding perceptual experience from human brain activity is a big challenge in neuroscience. Recent ad- 

vances in human neuroimaging have shown that it is possible to reconstruct a person’s visual experience 

based on the retinotopy in the early visual cortex and the multivariate pattern analysis (MVPA) method 

using functional magnetic resonance imaging (fMRI). Previous researches reconstructed binary contrast- 

defined images using combination of multi-scale local image decoders in V1, V2 and V3, where contrast 

for local image bases was predicted from fMRI activity by sparse multinomial logistic regression (SMLR) 

and other models. However, the precision and efficiency of the visual image reconstruction remain in- 

sufficient. Proper feature selection is widely known to be as critical for prediction and reconstruction. 

Aiming at the shortcomings of existing reconstruction models, we proposed a new model of Bayesian re- 

construction based on F-score feature selection (Bayes+F). The results indicate that the proposed Bayes+F 

model has better reconstruction accuracy and higher efficiency than the SMLR and other models, show- 

ing better robustness and noise resistant ability. It can improve the spatial correlation coefficient (Mean 

± variance: 0.7078 ± 0.2104) and decrease the standard error (Mean ± variance: 0.2693 ± 0.0871) be- 

tween the stimulus and the reconstructed image. Furthermore, the proposed model can reconstruct the 

images extremely rapid, 100 times faster than SMLR does. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Vision is among the important senses of humans and other

mammals. However, two basic aspects of visual science have yet

to be elucidated. (1) How does our brain respond and encode the

visual world? (2) Can we decode and reconstruct our visual per-

ceptual experiences in terms of brain activity? With advancements

in single-unit cellular recording, electroencephalogram (EEG), func-

tional magnetic resonance imaging (fMRI), and other techniques,

receptive fields, functional columns, and visual pathways associ-

ated with the first question have been sufficiently studied [1–3] .

Nevertheless, the second question remains a major challenge in

neuroscience. Multi-voxel pattern classification (MVPC) studies

have revealed that brain activity patterns generated in the early

visual cortex in different mental states can be used to decode dif-

ferent visual perceptions. Haxby et al. first identified distinct pat-

terns of fMRI responses in the ventral temporal cortex for several
∗ Corresponding authors. 
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bject categories, including different types of small man-made ob-

ects [4] . Kamitani et al. demonstrated that fMRI activity patterns

n early visual areas contain detailed orientation and motion infor-

ation that can reliably predict subjective orientation perception

nd motion direction [5,6] . Gerven et al. showed that the orienta-

ion and rotation direction of a continuously rotating grating can

e accurately decoded by using linear dynamical systems and hid-

en Markov models [7] . Natural images [8–12] , dynamic movies

13] , handwritten letters [14] , faces [15] , and visual imagery dur-

ng sleep [16] can also be identified and decoded among numerous

andidate images by using visual encoding models. 

Visual identification is constrained due to limited candidate im-

ge sets or classification categories. As such, categorical constraint-

ree visual image reconstruction methods should be developed to

ecode the visual perception. Miyawaki et al. utilized retinotopy in

he early visual cortex to accomplish a constraint-free reconstruc-

ion of contrast-defined arbitrary visual images from fMRI signals

f the human early visual cortex [17] . They proposed sparse multi-

omial logistic regression (SMLR) by using multi-voxel patterns of

MRI signals and multi-scale visual representation. A stimulus state

t each local element is predicted by using a decoder with multi-

oxel patterns. The outputs of each local decoder are subsequently

ombined to reconstruct the presented image. 

https://doi.org/10.1016/j.neucom.2018.07.068
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.07.068&domain=pdf
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However, we found that visual images reconstructed via SMLR

roposed by Miyawaki et al. contained a lot of noise, and more

han 10 h are needed to complete the entire reconstruction pro-

ess. As a result, a very low reconstruction efficiency is obtained.

ecently, Yu Zhan and Sutao Song et al. proposed a support vector

achine (SVM) and a naive Bayesian classifier based on indepen-

ent component analysis (NB-ICA) and improved the time con-

umption and spatial correlation between a stimulus and the re-

onstructed image to a certain degree [18,19] . Nevertheless, better

econstruction methods should be developed to explore potential

ractical applications. Proper feature selection is widely known to

e critical for prediction and reconstruction. Selecting appropriate

eatures and removing irrelevant or redundant features may re-

uce the noise of reconstructed images, decrease computational

omplexity, and improve reconstruction efficiency. In this study,

n F-score feature selection-based Bayesian model was proposed

o reconstruct visual images. The results show that the proposed

odel is more robust and noise resistant than SMLR and other re-

onstruction methods, such as SVM and RF with/without F-score

eature selection. Furthermore, the proposed model can also re-

onstruct the images extremely rapid, 100 times faster than SMLR

oes. 

. Material and methods 

.1. Data sources 

The dataset is collected from public data recorded by Miyawaki

t al. [17] . Three types of experimental sessions were conducted

o record the fMRI responses of the visual cortex: (1) conventional

etinotopy mapping session, (2) random image session, and (3) fig-

re image (geometric and alphabet shapes) session. The conven-

ional retinotopy mapping session was used to delineate the bor-

ers between visual cortical areas, and to identify the retinotopy

ap on the flattened cortical surfaces. In the current study, voxels

f V1, V2 and V3 were selected as features, with the dimensions of

017, 1045 and 1237 for the three visual areas. The retinotopy map-

ing procedure adopted a rotating wedge and an expanding ring of

ickering checkerboard. In the random image session, 440 10 × 10

ickering checkerboard spatially random patterns were presented

o each subject in 22 blocks and 20 runs. Each stimulus block was

 s long followed by 6 s rest period. Extra rest periods were added

t the beginning (28 s) and at the end (12 s) of each run. The

odel training was performed based on the 440 single-trial block-

veraged data. In the figure image session, five alphabet letters and

ve geometric shapes were shown to subjects six or eight blocks

hile fMRI data were recorded. Each stimulus block was 12s long

ollowed by a 12s rest period. Block-averaged data was used as the

est data. The experimental details can be found in the experimen-

al procedures of Miyawaki’s study (2008). 

All the data were obtained using a 3.0-Tesla Siemens MAGNE-

OM Trio A Tim scanner located at the ATR Brain Activity Imag-

ng Center. An interleaved T2 ∗-weighted gradient-echo echo-planar

maging (EPI) scan was performed to acquire functional images to

over the entire occipital lobe (TR, 20 0 0 ms; TE, 30 ms; flip angle,

0 °; FOV, 192 × 192 mm; voxel size, 3 × 3 × 3 mm; slice gap,

 mm; number of slices, 30). T2-weighted turbo spin echo images

ere scanned to acquire high-resolution anatomical images of the

ame slices used for the EPI (TR, 60 0 0 ms; TE, 57 ms; flip angle,

0 °; FOV, 192 × 192 mm; voxel size, 0.75 × 0.75 × 3.0 mm). T1-

eighted magnetization prepared rapid-acquisition gradient-echo 

MP-RAGE) fine-structural images of the whole-head were also ac-

uired (TR, 2250 ms; TE, 2.98 or 3.06 ms; TI, 900 ms; flip angle,

 °; field of view, 256 × 256 mm; voxel size, 1.0 × 1.0 × 1.0 mm).

The first 8s fMRI signals of each run were discarded to avoid

nstability of the MRI scanner. The acquired fMRI data first un-
erwent slice-timing correction and three-dimensional motion cor-

ection by Statistical Parametric Mapping (SPM) software. Then

he data were coregistered to the within session high resolution

natomical image of the same slices used for EPI and subsequently

o the whole-head high resolution anatomical image. Finally, the

MRI data underwent linear trend removal within each run. Ampli-

ude normalization relative to the mean amplitude of the first 20 s

est period in each run was performed to minimize the baseline

ifference across runs. The fMRI signals of each voxel were aver-

ged within each stimulus block time after shifting the data by 4 s

o compensate for hemodynamic delays. In the end, 1017 voxels

n V1, 1045 voxels in V2 and 1237 voxels in V3 were selected as

MRI features for model training and reconstruction according to

he retinotopy mapping session. The dataset can be found online

t http://www.neuron.org/supplemental/S08966273(08)00958-6 . 

.2. General procedure of image reconstruction 

We presented a general framework of visual image reconstruc-

ion by using multi-voxel fMRI signal patterns and multi-scale vi-

ual representation. Previous studies showed that the visual cortex

esponse is caused not only by corresponding visual stimulation,

ut also by the adjacent stimuli. Similarly, a visual image can be

epresented at multiple spatial scales in the visual cortex, which

ay serve to retain the visual sensitivity to fine-to-coarse patterns

t a single visual field location [20,21] . Therefore, multiscale infor-

ation from fMRI signals may achieve better reconstruction [17] .

e assumed that a local image is represented by a linear com-

ination of convolved image on different convolution kernel. The

timulus state in each local pixel can be predicted by using a de-

oder via multi-voxel patterns analysis with a weight set for each

ecoder, and the outputs of these decoders can be combined statis-

ically to reconstruct the presented local pixel. This reconstruction

nvolves the following main steps. (1) Random image sequences

ere used to present binary contrast at multiple visual field loca-

ions simultaneously and to determine the spatial linearity of neu-

al responses corresponding to localized visual stimuli. (2) An im-

ge decoder was established to directly simulate the relationship

etween the stimulus and the fMRI activity at a specific time when

he image was presented to the subject. The stimulus at each local

ixel was then predicted by using a local decoder. The outputs of

ll pixels were combined together to obtain the whole predicted

mage. The reconstruction principle is illustrated in Fig. 1 . 

An F-score feature selection method was applied to select dis-

riminant voxels, estimate their weights prior to classification, and

mprove the quality and efficiency of reconstruction. Instead of

MLR, a naive Bayesian classifier was used to decode the contrast

f multi-scale local images. Other classification methods, including

MLR, RF, and SVM with/without F-score feature selection, were

ompared in terms of reconstruction accuracy and efficiency. 

.3. F-score feature selection 

For a classifier that may refer to a large amount of obser-

ational variables, feature selection is necessary to select a rela-

ively small subset of variables, reduce computation consumption,

nd improve algorithm performance. F-score is a simple and fre-

uently used feature selection technique to quantify the discrimi-

ation of two sets of real numbers [22–27] . With the training vec-

ors x k , k = 1 , 2 , . . . , m, the F-score of the i th feature is defined as

ollows if the numbers of positive and negative instances are n + 
nd n −, respectively.: 

 i = 

( x 
(+) 
i − x i ) 

2 + ( x 
(−) 
i − x i ) 

2 

1 
n + −1 

∑ n + 
k =1 

(x (+) 
ki 

− x 
(+) 
i ) 2 + 

1 
n −−1 

∑ n −
k =1 

(x (−) 
ki 

− x 
(−) 
i ) 2 

(1) 

http://www.neuron.org/supplemental/S08966273(08)00958-6
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Fig. 1. Principle of visual image reconstruction. The fMRI signals were measured when subjects viewed the Chess board visual stimuli (10 × 10 patches). Image decoders 

(Bayes+F or SMLR and so on) were established to predict the contrast of image bases on different convolution kernels. The predicted value of a specific pixel was calculated 

by summing up the class labels of all the “local image bases”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Random image for convolution operation. The left represents four different 

types of convolution kernels. The remaining images represent nine convolved im- 

ages. 
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where x i , x (+) 
i 

and x (−) 
i 

are the averages of the i th feature of

the whole, positive, and negative data sets, respectively; x (+) 
k,i 

is

the i th feature of the k th positive instance; and x (−) 
k,i 

is the i th

feature of the k th negative instance. The numerator indicates

the discrimination between positive and negative sets, and the

denominator denotes the value within each of the two sets. A high

F-score shows that a feature is highly discriminative. 

Considering more than two sets of real numbers, Xie et al. pro-

posed an improved F-score method [28] . Given the training vectors

x k , k = 1 , 2 , . . . , m, and the number of data sets l ( l ≥ 2), the F-score

of the i th feature is defined as follows if the number of the j th data

set is n j , j = 1 , 2 , . . . , l.: 

F i = 

∑ l 
j=1 ( x 

( j) 
i 

− x i ) 
2 

∑ l 
j=1 

1 
n j −1 

∑ n j 
k =1 

( x 
( j) 
ki 

− x 
( j) 
i 

) 2 
(2)

where x i and x i 
( j) are the averages of the i th feature of the whole

data set and the j th data set, respectively; x 
( j) 
k,i 

is the i th feature of

the k th instance in the j th data set. The numerator indicates the

discrimination between data sets, and the denominator denotes

the value within each of the data set. A high F-score shows that

the feature is highly discriminative. In this study, the improved

multiple classification F-score method was applied to select fea-

tures during the training of the multi-scale local decoder. 

2.4. Convolution processing of random images 

Four convolution kernels (see Supplementary Material 1) are

used to process each random image to produce nine convolved

random images ( Fig. 2 ). After the random image is processed by

the convolution kernel 1, the resulting image is exactly the same

as the original one, namely, there is no change before and after

the convolution kernel 1. But after the random image is processed

by kernel 2 or 3, the resulting image is one column or one row
ess than the original size, and the mean contrast value of each lo-

al image pixel becomes 0, 0.5 or 1. Similarly, the resulting image

s one column and one row less than the original size after be-

ng processed by the convolution kernel 4, and the mean contrast

alue of the local pixel becomes 0, 0.25, 0.5, 0.75 or 1. 

In order to keep the convolved image consistent with the origi-

al image size, zero-padding is applied for each of the kernel con-

olved images. The nine convolved images after zero-padding are

llustrated as φ1 ∼φ9 in Fig. 2 . 

.5. Visual image reconstruction model 

Visual image reconstruction is to create a model to predict the

ontrast of image bases on different spatial scales for each pixel lo-

ation. For the stimulation of the visual image (440 random images

r 80 figure images), each image can obtain the average activation

alue of each voxel in early visual area (V1, V2, V3) from the fMRI.
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Fig. 3. Schematic illustration of the contrast-defined visual stimuli decoding steps 

using F-score feature selection based Bayesian classifier. 
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R  
ach random image can obtain nine convolved images by convo-

ution processing (see Supplementary Material 2). These convolved

mages and the average activation value of each voxel in these vi-

ual areas are used as the training data set. The average activation

alue of each voxel in V1, V2, V3 of geometric shapes and alphabet

etters images are used as the test data (see Supplementary Mate-

ial 2). 

The following is the data processing steps of the visual image

econstruction model in the visual area: 

(1) For convolved image φ1 , the pixel values of 440 random im-

ages in the first position is used as the training label, which

is a vector of size 440 × 1. The corresponding average acti-

vation value of each voxel in V1 were used as training data,

which is a matrix of size 440 × 1017 (V1 contains 1017 vox-

els). The training data and label were combined into train-

ing samples, and the Bayesian classifier was used to deter-

mine the classification under the ten-fold cross validation.

The predictive label ( x 1 ) of the training data can be ob-

tained after the Bayesian classifier. For the other eight con-

volved images (φ2 , φ3 , . . . , φ9 ) , repeat the above steps so all

the nine predictive labels (x 1 , x 2 , . . . , x 9 ) of the training data

can be obtained. The nine predictive labels (x 1 , x 2 , . . . , x 9 )

of the training data are combined with training label ( y )

to establish multiple linear regression models (y = ω 1 × x 1 +
ω 2 × x 2 + · · · + ω 9 × x 9 + ε ) , where ε is the residual. The

training label ( y ) is the actual pixel value of the first

position in the random image. These association coeffi-

cients (ω 1 , ω 2 , . . . , ω 9 ) are estimated using the least squares

method. 

(2) For training data and training labels, the F-value of each

voxel is calculated by the F-score feature selection algorithm.

We arrange the F values of all the voxels in ascending order

and select the first ten values. The average activation voxel

values corresponding to the first ten F scores are chosen as

the filtered features (see Supplementary Material 5). The fil-

tered training data is a matrix of size 440 × 10. Likewise, the

corresponding filtered features of 80 figure image stimuli are

calculated as the test data, which is a matrix of size 80 × 10.

For the convolved image φ1 , the F-scored pixel values of 440

random images in the first position are trained with a naive

Bayesian classifier. Then, the trained model is used to pre-

dict the label of the test data. For the other eight convolved

images (φ2 , φ3 , . . . , φ9 ) , repeat the above steps and then ob-

tain eight predictive labels (C 2 , . . . , C 9 ) of size 80 × 1 of the

test data. 

(3) The nine predictive labels (C 1 , C 2 , . . . , C 9 ) of the testing

sample and their association coefficients (ω 1 , . . . , ω 9 ) are

summed up to obtain the final predicted pixel value

( 
∑ 9 

i =1 ω i × C i ) of the first position. 

Above steps are repeated for each position of the test images

100 locations), then the corresponding reconstructed images can

e obtained. Schematic illustration of the decoding steps is shown

s Fig. 3 . Detailed process is given in the supplementary material 3.

. Results 

.1. Reconstruction accuracy 

The reconstructing stimulus included geometric shapes and al-

habet shapes. We reconstructed the images with the activities

f the voxels in V1. In this part, the F-score combined Bayesian

ethod, three representative classification methods [SMLR, ran-

om forest (RF), and SVM], and two F-score combined methods

RF+F and SVM+F) were applied to compare their performances
nd reconstruction efficiencies. The reconstructed images obtained

y the six algorithms are shown seperately in Fig. 4 . The pre-

ented stimulus and their corresponding final reconstructed images

btained via the six methods are compared in Fig. 5 . Although ge-

metric and alphabet shapes are not used to train the reconstruc-

ion model, the six algorithms can effectively reconstruct the sim-

le contrast stimulus images. Fig. 4 (d) reveals the reconstructed

esults of SMLR algorithm proposed by Miyawaki et al. The re-

onstructed images display the essential features of the original

eometric and alphabet shapes ( Figs. 4 and 5 ). The images recon-

tructed by the F-score-combined methods ( Figs. 4 (a)–(c), bottom

 rows in Fig. 5 ) showed less noise and higher target-background

ontrast than those without F-score methods ( Fig. 4 (d)–(f) and up-

er 3 rows in Fig. 5 ). The quality and noise resistance of the pro-

osed F-score-combined Bayesian model are excellent. Therefore,

he F-score feature selection can be applied to reduce the noise of

he reconstructed images by selecting task-related voxels and dis-

egarding irrelevant voxels. 

Spatial correlations between the stimulus and reconstructed

mages are objective indices used to evaluate reconstruction accu-

acy [17,19] . Fig. 6 shows the average standard error and spatial

orrelation coefficient between the represented and reconstructed

mages respectively. F-score-combined methods yield lower stan-

ard error and higher correlation coefficient than the methods

ithout F-score. The proposed F-score-combined Bayesian model

xhibits the highest correlation coefficient and the lowest standard

rror. The main contribution lies in that F-score feature selection

ethod filters out the noise which is irrelevant to the local image

econstruction. For SMLR, the average standard error and spatial

orrelation between the presented and reconstructed images are

.4059 ± 0.0613 and 0.6335 ± 0.1540, respectively. By compar-

son, the standard error and average spatial correlation of the F-

core combined Bayesian model are 0.2693 ± 0.0871 and 0.7078

0.2104, respectively. Hence, F-score feature selection contributes

 lot to the reconstruction quality improvement. 

.2. Reconstruction time 

Our brain can rapidly recognize and process natural scenes [29] .

econstruction time should also be considered as an important
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Fig. 4. Visual reconstruction results obtained by six different algorithms in v1 area. (a) The results obtained by the F-score combined naive Bayesian classifier. (b) The results 

obtained by the F-score combined random forest classifier. (c) The results obtained by the F-score combined support vector machine classifier. (d) Results obtained by sparse 

multinomial logistic regression classifiers. (e) Results obtained by a random forest classifier. (f) Results obtained a support vector machine classifier. For each panel, the first 

row represents the images which were presented to subjects during fMRI data recording. The 2nd–9th rows show the reconstructed results repeated 8 times. The bottom 

row represents the averaged reconstructed images. 

Fig. 5. The averaged reconstructed images in v1. The first row represents the im- 

ages which were presented to subjects during fMRI data recording. The bottom rows 

represent the corresponding averaged reconstructed images using the six methods. 

After joining the F-score feature selection algorithm (SVM+F, RF+F, Bayes+F), the re- 

construction results were closer to the real stimulation image, which showed that 

feature selection is necessary. 
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index to evaluate reconstruction algorithms. Fig. 7 shows the com-

parison of the reconstruction time of the six algorithms. The

configuration of the computer used is shown in Supplementary

Materials 4. SMLR requires the longest reconstruction time of ap-
roximately more than 14 h. By contrast, the F-score-combined

ayesian model needs about 8 min. Therefore, the F-score com-

ined Bayesian model runs almost one hundred times faster than

he SMLR method does. Although the SVM+F calculation time is

lightly lower than SVM, and the RF+F calculation time is slightly

ower than that of RF, but the F-score feature selection algorithm

oes not fundamentally reduce the computation time. In terms of

he reduction in reconstruction time, the most essential factor is

he low Bayesian computational complexity. 

.3. Reconstruction effects from different visual cortex 

To compare the contribution of different visual areas when

ontrast-defined visual information is decoded, we also recon-

tructed the stimulus with the activities of the voxels in V2 and

3 independently by using the F-score combined Bayesian model.

he results are shown in Fig. 8 . For each panel in Fig. 8 a, the

rst row represents the presented images to subjects during fMRI

ata recording. The 2nd–9th rows show the reconstructed re-

ult of the same image from one trial fMRI data. The bottom

ow represents the averaged images of all reconstructed images

f the same image. The results show that reconstruction quality

ecreases gradually from V1 to V2 and V3. The correlation co-

fficients ( Fig. 8 b) of V1, V2, and V3 are respectively: 0.7078 ±
.2104, 0.4614 ± 0.1644, and 0.2284 ± 0.1542, respectively. The

tandard error ( Fig. 8 c) of V1, V2, and V3 are 0.2693 ± 0.0871,
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Fig. 6. Reconstruction performance of different algorithms in visual V1 area. (a) Reconstruction standard error of the six algorithms. (b) Reconstruction correlation coefficient 

of the six algorithms. 

Fig. 7. Reconstruction time of the six algorithms. 
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.3905 ± 0.0493, and 0.4520 ± 0.0398, respectively. Higher visual

reas show significantly smaller correlation coefficient ( Fig. 8 b)

nd larger errors ( Fig. 8 c) than V1 (ANOVA, Bonferroni-corrected

 < 0.05 for multiple comparisons). The results show that V1

as a better topological mapping relationship with the visual im-

ge. Although the quality of the reconstructed images becomes

oorer as the visual area increases for V2 or V3, it does not

ecessarily mean that the higher visual area does not character-

ze the visual image well. The reason is that the higher visual

rea means more abstract image coding which results in weaker

opological mapping relationship. We combined the voxels of V1,

2 and V3 together, and found that the reconstruction perfor-

ance was slightly worse than that obtained by using features

rom only V1 (Supplementary Materials 5). The average standard

rror and spatial correlation between the presented and recon-

tructed images are 0.3182 ± 0.0786 and 0.6737 ± 0.1654, respec-

ively. The addition of voxels in V2 and V3 as features brings noise

nstead. 
. Discussion 

In this study, an F-score feature selection combined Bayesian

odel was proposed to improve the reconstruction performance

n the basis of Miyawaki’s framework of constraint-free visual im-

ge reconstruction. The result showed that the proposed model can

e used to reconstruct the images with the highest quality (high-

st correlation coefficient and lowest standard error) and fastest

peed among the six models. F-score method is a basic and simple

echnique used to determine the distinction between multi classes

ith real values [22–24] . F-score feature selection provides the ad-

antages of selecting task-related voxels as input features and ef-

ectively removing irrelevant voxels. As a result, the noise of re-

onstructed images is greatly reduced. In this paper, the first ten

oxels were selected as input features because of the following

easons: (1) we compared the reconstruction performances under

ifferent number of features, and found that the correlation coef-

cient and standard error are pretty stable and good when feature

umber is around 10. But with the increasing of voxel numbers,

he reconstruction accuracy decreased and noise increased, shown

s supplementary material 6; (2) an increase of the number of fea-

ures cannot enhance the reconstruction quality obviously but pro-

ong the reconstruction time. 

In this study, visual images were reconstructed with five addi-

ional models (SVM and RF with/without F-score, Bayes+F) except

MLR. Thus, the reconstruction model is diverse and specific. Al-

hough lots of pattern recognition algorithms can be used to con-

truct the model of visual image reconstruction, performance and

fficiency may be different among various algorithms. Compared

ith other machine learning algorithms, Bayesian algorithm ap-

lies a priori knowledge to calculate posterior probability and has

 simpler computing complexity, so it costs less computation time.

herefore, the proposed F-score combined Bayesian reconstruction

odel is more accurate and less time consuming than other mod-

ls. The proposed model also yields a higher spatial correlation

han NB-ICA [19] and 3-pixel image-based SVM [18] . Their correla-

ion coefficients are 0.41 ± 0.13 and 0.6934 ± 0.1165, respectively.

Reconstruction quality continuously decreases from V1 to V2

nd V3. This is because V1 has the most direct retinotopy map-

ing from the visual field to the cortical voxels. When the image

nformation flow passes through the visual pathway, it will be pro-

essed in a nonlinear way [17] . Higher visual areas have a less
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Fig. 8. Comparison of reconstructed images in different visual areas under the Bayes+F algorithm. (a) From left to right panels, the reconstructed images in V1, V2 and 

V3, respetively. (b) The correlation coefficient between the reconstructed and the stimulus images in V1, V2 and V3. With the increase of the visual cortex, the correlation 

coefficient decreased. (c) The standard errors of the reconstructed images in V1, V2 and V3. 
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direct retinotopy mapping from the visual field to the cortical vox-

els than V1, so they may have a more abstract representation of

image. Meanwhile, the reconstruction model proposed in this pa-

per is based on the topology mapping relationship model, there-

fore, the reconstruction effect decreases from V1 to V2 and V3.

Fig. 8 reveals the comparison of the reconstructed images in in-

dividual V1, V2, and V3 by using the F-score combined Bayesian

algorithm. The result is consistent with that in previous studies

[17,19] . Theoretical studies have suggested that V1 uses a sparse

code to represent natural scenes efficiently [30] . This preference

to V1 voxels may be attributed to the reconstruction principle of

retinotopic organization. The center of the reconstructed image is

more accurate and clearer than the surrounding areas, therefore,

fixation and visual attention may also contribute to the reconstruc-

tion quality [17] . In future research, images can be reconstructed

with more fixation points to improve the average accuracy of re-

constructed images in the surrounding areas. However, the phe-

nomenon that the voxels in V1 is more effective in reconstruction

does not indicate that higher visual areas do not contribute to the

image reconstruction. Higher visual areas are involved in process-

ing information of objects, faces, scenes, and other complex images

[31,32] , so the higher visual area voxels may play important roles

in reconstructing the complex natural scenes. 

5. Conclusion 

In this paper, aiming at the shortcomings of existing reconstruc-

tion models, we proposed an F-score feature selection-combined

Bayesian model that can be efficiently used to reconstruct visual

images from human brain activities. The contribution of the F-

score feature selection algorithm is mainly to reduce the back-
round noise of the reconstructed image and improve the quality

f the reconstructed image. The contribution of the Bayesian classi-

er algorithm is to reduce the time required for image reconstruc-

ion and improve the efficiency of reconstructing the image. The

esult indicates that the proposed Bayes+F model has better re-

onstruction accuracy and higher reconstruction efficiency than the

MLR and other models, showing better robustness and noise re-

istant ability. Besides, the proposed model can reconstruct the im-

ges extremely rapid, 100 times faster than SMLR does. This study

rovides a promising support for brain computer interface in de-

oding the brain activities into human perception. 
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